Timed Literals & Exogenous Events

• Useful to represent **predictable exogenous events** that happen at known times, and cannot be influenced by the planning agent.

For instance (using PDDL notation):

(at 8 (open-fuelstation city1))
(at 12 (not (open-fuelstation city1)))
(at 15 (open-fuelstation city1))
(at 19 (not (open-fuelstation city1)))

• Timed literals in the preconditions of an action impose **scheduling constraints** to the action:

If (refuel car city1) has over all condition open-fuelstation, *it must be executed during the time window* [8,12] *or* [15,19]. (Similarly for other types of action conditions)

DTP Constraints for PDDL2.2 Domains

• Action ordering constraints

E.g., a must end (a⁺) before the start of b (b⁻): $a^+ \prec b^$ $a^+ \prec b^- \equiv a^+ - b^- \leq 0$

• Duration Constraints

E.g.,
$$(a^+ - a^- \le 10) \land (a^- - a^+ \le -10))$$

• Scheduling constraints (in *compact* DTP-form):

$$\bigvee_{w \in W(p)} \left(\left(a_{start} - a^{-} \leq -w^{-} \right) \land \left(a^{+} - a_{start} \leq w^{+} \right) \right).$$

If p over all timed condition with windows $W(p) = \{w_1, \ldots, w_n\}$ $(a_{start} \text{ is a special instantaneous action preceding all others})$

Note: we can compile all timed conditions of an action into a single **over all** timed precondition (with more time windows)

Temporally Disjunctive LA-graph

A Temporally Disjunctive Action Graph (TDA-graph) is a 4-tuple $\langle \mathcal{A}, \mathcal{T}, \mathcal{P}, \mathcal{C} \rangle$ where

- \mathcal{A} is a linear action graph;
- \mathcal{T} is an assignment of real values to the nodes of \mathcal{A} (determined by solving the DTP $\langle \mathcal{P}, \mathcal{C} \rangle$)
- \mathcal{P} is the set of time point variables representing the start/end times of the actions labeling the action nodes of \mathcal{A} ;
- C is a set of ordering constraints, duration constraints and scheduling constraints involving variables in \mathcal{P} .

Propositional flaw: unsupported precondition node

Temporal flaw : action *un*scheduled by \mathcal{T} ($\langle \mathcal{P}, \mathcal{C} \rangle$ is unsolvable)

Example of TDA-graph

15

Temporal values in a TDA-graph

- The DTP D = ⟨P,C⟩ of a TDA-graph ⟨A,T,P,C⟩ represents a set ⊖ of STPs (unary constraints of D plus at most one disjunct for each disjunctive constraint)
- Induced STP: a satisfiable CSP in Θ
- **Complete induced STP**: an induced STP with exactly one disjunct (time window) for each disjunctive constraint
- Optimal induced STP: a complete induced STP with a solution assigning to a_{end} the minimum value over all solutions of every complete induced STP of \mathcal{D}
- \Rightarrow Optimal schedule for $\mathcal{D} = \mathcal{T}$ -values: an optimal solution of an optimal induced STP of \mathcal{D} for a_{end} .

Solving the DTP of a TDA-graph

Finding a solution for a DTP \Rightarrow solving a meta CSP: [Stergiou & Koubarakis, Tsamardinos & Pollack, and others]

- *Meta variables*: constraints of the DTP
- Meta variable values: constraint disjuncts
- *Implicit meta constraint*: the values (constraint disjuncts) of the meta variables form a satisfiable STP

Solution of the meta CSP = complete induced STP of the DTP

In general NP-hard, but polynomial for the DTP of a TDA-graph:

Theorem: Given the DTP \mathcal{D} of a TDA-graph, deciding satisfiability of \mathcal{D} and finding an optimal schedule for \mathcal{D} (if one exists) can be accomplished in polynomial time.